Control system design by SCE lab, School of Mechanical Engineering, Suranaree University of Technology

Control System Design

Performance Specifications: Time domain and Frequency domain

- Relative stability
- Speed of dynamic responses
- Accuracy at steady state operation

Unit-step response

- Rise time, (t_r) , Peak time (t_p), Settling time (t_s) 5% error or 2% error
- %Percent overshoot, Steady state error for step input, Static position error constant (K_p)

Unit-ramp response

- Steady state error for ramp input, Static velocity error constant, (K_v)

Open-loop transfer function

- Type of system in unity feedback control system
- Gain margin(GM), (dB); Phase margin(PM), (degree)

Closed-loop transfer function

- Natural frequency (ω_n) , rad/sec; Damping ratio (ζ) , Gain
- Bandwidth frequency (ω_{BW}) , rad/sec

Control system diagram in unity feedback

$G_{C}(s)$ – Compensator / Controller; G(s) – Plant / Transfer function

Function	Compensator	Transfer function	Characteristics
Improve	PI	$K \frac{s+z_c}{c}$	1. Increases system type.
steady-state error		s s	2. Error becomes zero.
			3. Zero at $-z_c$ is small and negative.
			4. Active circuits are required to implement.
Improve steady-state error	Lag	$K\frac{s+z_c}{s+p_c}$	1. Error is improved but not driven to zero.
			2. Pole at $-p_c$ is small and negative.
			3. Zero at $-z_c$ is close to, and to the left of, the pole at $-p_c$.
			4. Active circuits are not required to implement.
Improve transient response	PD	$K(s+z_c)$	 Zero at -z_c is selected to put design point on root locus.
			Active circuits are required to implement.
			Can cause noise and saturation; implement with rate feedback or with a pole (lead).
Improve transient response	Lead	$K\frac{s+z_c}{s+p_c}$	 Zero at −z_c and pole at −p_c are selected to put design point on root locus.
			2. Pole at $-p_c$ is more negative than zero at $-z_c$.
			3. Active circuits are not required to implement.
Improve steady-state error and ransient response	PID	$K\frac{(s+z_{\rm lag})(s+z_{\rm lead})}{s}$	 Lag zero at -z_{lag} and pole at origin improve steady-state error.
			2. Lead zero at -zlead improves transient response.
			 Lag zero at -z_{lag} is close to, and to the left of, the origin.
			 Lead zero at -z_{lead} is selected to put design point on root locus.
			5. Active circuits required to implement.
			Can cause noise and saturation; implement with rate feedback or with an additional pole.
improve steady-state error and ransient response	Lag-lead	$K\frac{(s + z_{\text{lag}})(s + z_{\text{lead}})}{(s + p_{\text{lag}})(s + p_{\text{lead}})}$	 Lag pole at -p_{lag} and lag zero at -z_{lag} are used to improve steady-state error.
			2. Lead pole at $-p_{\text{lead}}$ and lead zero at $-z_{\text{lead}}$ are used to improve transient response.
			3. Lag pole at $-p_{lag}$ is small and negative.
			 Lag zero at -z_{lag} is close to, and to the left of, lag pole at -p_{lag}.
			 Lead zero at -z_{lead} and lead pole at -p_{lead} are selected to put design point on root locus.
			 Lead pole at -p_{lead} is more negative than lead zero at -z_{lead}.
			7. Active circuits are not required to implement.

Control system design by SCE lab, School of Mechanical Engineering, Suranaree University of Technology

Lag Compensator

Lag compensation techniques based on the frequency response approach

Lag compensator transfer function

$$G_{c}(s) = K_{c}\beta \frac{Ts+1}{\beta Ts+1} = K_{c} \frac{s+\frac{1}{T}}{s+\frac{1}{\beta T}} \qquad (\beta > 1)$$

Compensate magnitude and phase profile shown in figure

Example Lag design ; Desired system is K_v of 16.22 sec⁻¹, PM of 60 degree and GM of least 10 dB

Control system design by SCE lab, School of Mechanical Engineering, Suranaree University of Technology

_
degree

<u>Step I:</u> Determine total gain (K) of open-loop TF to satisfy the requirement on the given static velocity error constant (K_v)= 16.22

$$K_{v} = \lim_{s \to 0} sG_{c}(s)G(s) = \lim_{s \to 0} s\left(K_{c}\beta \frac{Ts+1}{\beta Ts+1}\right) \left(\frac{100}{s(s+36)(s+100)}\right) = 16.22$$

where $K_{c}\beta = K$, thus

$$K = 16.22(36) = 583.92$$

New open-loop transfer function

$$G_0(s) = \frac{58392}{(s+100)(s+36)s} = \frac{58392}{s^3+136s^2+3600s}$$

Step II: Plot bode diagram of open-loop TF with new gain such as

Phase margin(PM)= 59.2 deg. at 14.8 rad/sec ; Gain margin(GM)= 18.5 dB at 60 rad/sec

<u>Step III:</u> Phase margin requirement is 60 deg. plus 10 deg. Total PM is 70 deg.

For PM of 70 deg., -180+70 = - 110 deg.; At 9.16 rad/sec has phase -110 deg. and magnitude is 4.66 dB. We must change phase margin frequency from 14.8 rad/sec to 9.16 rad/sec

<u>Step IV</u>: The corner frequency $\omega = 1/T$ may be chosen 1 decade below the new gain crossover frequency

At 0.916 rad/sec is zero of lag compensation. $\frac{1}{T} = 0.916 \rightarrow T = 1.092$

Step V:
$$20\log \frac{1}{\beta} = -4.66 \rightarrow \beta = 1.71$$

pole of lag compensation. $\frac{1}{\beta T} = 0.5357$

Now lag compensator is $G_c(s) = K_c \frac{s+0.916}{s+0.5357}$

Step VI: Determine gain of lag compensator

$$G_c(s) = K_c \frac{s + 1/T}{s + 1/\beta T} = K_c \frac{s + 0.916}{s + 0.5357}$$

 $T = \frac{1}{0.916} = 1.092; \ \beta = 1.71;$ $K_c \beta = K = 583.92 \rightarrow K_c = 341.474$

Now lag compensator is $G_c(s)=341.474\left(rac{s+0.916}{s+0.5357}
ight)$

Check steady state error for unit-ramp input relation with velocity constant and PM relation with damping ratio (% overshoot)

